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On the Relation between Filtrate Flux and Particle
Concentration in Batch Crossflow Microfiltration

A. McCARTHY, P. K. WALSH, and G. FOLEY*
SCHOOL OF BIOLOGICAL SCIENCES

DUBLIN CITY UNIVERSITY

DUBLIN 9, IRELAND

ABSTRACT

The relation between the filtrate flux and particle concentration in batch
crossflow microfiltration is investigated using a model based on classical filtration
theory and the Kern-Seaton theory of surface fouling. The model, which includes
the effects of cake compressibility but not of membrane fouling, is solved for both
laminar and turbulent tangential flows. It is found that the sole effect of cake
compressibility is to reduce the flux without altering the general shape of the flux
versus concentration curve. Fluxes which increase with increasing concentration
are shown to be a result of enhanced cake removal due to the increased wall
shear stress brought about by increased suspension viscosity. A sigmoidal relation
between flux and concentration is reproduced by the model only if there is a
reduction in the cake removal rate as the tangential flow regime changes from

turbulent to laminar.

INTRODUCTION

The relation between filtrate flux and particle concentration during
thickening of a suspension by batch crossflow microfiltration is a subject
that has provoked considerable comment (1). A simplified diagram of such
an operation is given in Fig. 1. As filtration proceeds, the volume of sus-
pension declines, with a parallel increase in particle concentration. Most
authors have found that, initially, there is a very rapid decline in flux with
increasing concentration (2-5). This is followed by a plateau region in
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FIG. 1 Batch crossflow microfiltration.

which the flux is relatively insensitive to changes in concentration. After
the plateau region, two types of behavior have been observed. The first
is characterized by a flux which increases with particle concentration (2,
4), while the second is distinguished by a sudden drop in flux leading to
the classic sigmoidal curve (4-6). While it has been suggested that data
of the latter type can be extrapolated to zero flux (5), experimental evi-
dence has been obtained which suggests that the flux does not decline to
zero, but reaches another plateau region at very high concentrations (2,
4).

While it is generally accepted that many, if not all, of the above phenom-
ena arise as a result of changes in suspension rheology (4), no attempt has
been made to incorporate these ideas into a single mathematical model. In
addition, the effect (if any) of cake compressibility on the shape of the
flux versus concentration curve remains uncertain. The purpose of this
paper is to clarify the roles of rheology and compressibility by developing
a simple mathematical model of batch crossflow microfiltration.

MODEL DEVELOPMENT

The basic model consists of a particle balance, a liquid balance, an
equation describing the dynamics of cake formation in crossflow systems,
and the classical filtration equation relating filtrate flux to pressure driving
force. The particle balance can be written

d(Ve) (_iA_l
dt -4 dt (1)

where A is the membrane area and V, ¢, and M are the suspension volume,
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particle concentration, and cake mass per unit area, respectively, at time
t. The liquid balance for the system takes the form

dvidt = —AJ (2)

where J is the filtrate flux.
The following equation is used in this study to describe cake formation;

dMlidt = ¢J — kM 3)

where & is a constant, 7 is the shear stress at the surface of the filter cake,
cJ is the particle deposition rate, and ktM is the particle removal rate,

This expression owes its origins to the Kern—Seaton model of heat
exchanger fouling (7). Those authors assumed that fouling of heat exchan-
gers was the net result of the simultaneous deposition on to, and removal
of particulates from, the heat exchanger surface. The particle removal
term, ktM, is based on the assumption that randomly sized clumps of
particles are removed by the ‘‘scouring’ action of the wall shear stress.
While a more rigorous derivation of the first-order dependence on M can
be formulated using the concept of turbulent bursts (8), the lack of experi-
mental evidence for particie reentrainment by such bursting phenomena
(9), means that Eq. (3) must be considered as a purely empirical expression
for cake formation.

In this paper, Eq. (3) is assumed to be applicable to both laminar and
turbulent tangential flows. This is probably a simplification since one
might expect different mechanisms of particle reentrainment for different
flow regimes, with a parallel difference in the form of the basic equation
for cake formation. In order to distinguish between the two flow regimes,
it is assumed later that turbulent-to-laminar transitions can be modeled
as involving changes in the cake removal constant, k.

The balance Eqgs. (1) to (3) are accompanied by the filtration equation

(10)

AP

I = SR + M) “)

where AP is the transmembrane pressure, . is the filtrate viscosity, Ry
is the membrane resistance, and « is the specific cake resistance.
Inverting Eq. (4) and differentiating with respect to time gives

1d]l g [ dM do dAPC]

FEa AP |%d TMaAr & ©)
where it is assumed that the membrane resistance is constant and AP. is

the cake pressure drop defined by
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AP. = AP — pRwmJ 6)

Differentiating Eq. (6) with respect to time and combining with Eq. (5)
gives

dj alc] — kM)
- @)
! _A_P + R M d*(!.
w? T WM AP

Therefore, Eqs. (1), (2), and (7) form the basis of the model, with Eqgs.
(3) and (4) being employed to substitute for M and dM/dt where required.

Now, assuming that the pressure dependence of the crossflow specific
resistance takes the same form as its dead-end counterpart, we can use
the empirical expression (11)

AP,
ao(l — n) ( Pa>
o = (8)

APC 1—-n
(1+"E) -1

where «y, n, and P, are constants. The use of this equation clearly intro-
duces another simplification into the model. Previous work has shown
that the pressure dependence of the crossflow specific cake resistance
may be influenced by particle polydispersity (12, 13). In addition, recent
work by Tanaka et al. (14) indicates that the orientation of deposited
nonspherical particles is a function of the relative magnitudes of the trans-
membrane flux and crossflow velocity. It is likely that this effect would
also alter the pressure dependence of the crossflow specific resistance.
Therefore, the analysis presented in this paper is only applicable to mono-
disperse suspensions of spherical particles.

It is convenient to write the differential equations in nondimensional
form using the following transformations:

J* = T, 9)
c* = ¢l (10)
V* = V/V, an
w t
t* = VilATs (12)
o* = alag (13)

AP* = AP/Pa (]4)
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AP¥ = AP/P, = AP*(1 — J*) (15)

where ¢o, Vo. and J, refer to initial values of ¢, V, and J.
Equations (1), (2), and (7), written in dimensionless form and having
substituted for all terms involving M, thus become

ﬁf _ (plct*C*J*3 + ‘P2J*2 _ (sz* (16)
ar* = AP da
V=~ U* = I™) g5 pe
dv*ldt* = —J* a7n
dc* 0 1
ol

where J*, V*, and c* are all equal to unity at ¢t = 0.
The dimensionless groups in the above equations are defined as follows:

_ QgCo Vo
_ k’TVo
(‘PZ - AJO (20)

Physically, ¢; is the ratio of cake resistance to membrane resistance if all
the particles in the feed reservoir were placed on the membrane with A P,
= 0. Likewise, ¢, can be viewed as the ratio of the particle removal rate
when all the particles in the feed have deposited, to the initial particie
deposition rate.

Case 1. Laminar Flow in a Rectangular Module

In this case it is assumed that filtration is taking place in a module
with rectangular geometry, in which the tangential flow is laminar and
Newtonian. Therefore, the shear stress at the cake surface can be approxi-
mated by

Two Ms

aO = oHE p n

T =

where Two 1s the wall shear stress for flow of pure filtrate through a clean
channel, & is the cake thickness at time ¢, H is the channel half-height,
and p is the viscosity of the suspension at time 1. While Eq. (21) is strictly
true only when the membrane has zero permeability, it is a good assump-
tion when the ratio of flux to crossflow velocity is significantly less than
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unity. This condition is satisfied in most microfiltration operations of prac-
tical interest.

Assuming that the particles have a density ps, and that the average
particle volume fraction in the cake is ¢, the cake thickness can be related
to the cake mass per unit area through the expression

M = p.$d 22

For compressible cakes, the average particle volume fraction in the cake
can be computed using the expression (11)

1—n~B[(l+AP;“)"”—1]

¢ = o 23)

1 -n (1 + AP¥) -8 — |
where & is the particle volume fraction in the unstressed cake (i.e., at
AP. = 0), and B is another empirical constant.

Equations (22) and (4) can be combined to relate the cake thickness to
the flux, and Eq. (22) can then be rewritten in terms of the dimensionless
flux as

*
T = Twﬂp“s 5 (24)
-]
a*¢* J*
where '
®s = aopshoH (25)
b* = dbldo (26)
and
R = ps/p (27

The suspension viscosity is assumed to be related to the pure filtrate
viscosity by the equation

1 + p¥lck)™?
= (1 - T 2

where ¢, is the maximum allowable particle concentration and both ¢,
and ps have been nondimensionalized with respect to c¢y. This expression
is the well-known Krieger—Doherty equation written in terms of mass
concentrations rather than volume fractions, and with the product of the
intrinsic viscosity and maximum packing fraction taken to be equal to 2
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(15). In summary, the dimensionless group, ¢», can be written in full as

b
¢ = Pa0Pe . 29)
1 — _$3 i -1
a*d)* J*
where
ktwoV
90 = 37— (30)

Equations (16) to (18) can now be solved numerically once the necessary
dimensionless groups are specified.

Case 2. Initially Turbulent Flow in a Tubular Module

Here it is assumed that filtration occurs in a tubular module in which the
flow is initially turbulent but may become laminar as a result of increasing
suspension viscosity. It should be noted that in the analysis presented for
tubular systems in this paper, the cake thickness is assumed to be small
relative to the tube diameter, and thus the curvature of the cake can be
neglected.

The shear stress at the cake surface can be approximated by

Two f
(1 — 8/Ro)* fwo @1

where Ry is the tube radius, f is the friction factor when the cake has
reached a thickness 8, and fwo is the friction factor based on pure filtrate
flow through a clean channel. Thus, ¢, can be expanded as before to give

T =

ey L

- a*d* J*

¢ =

where, in this case, ¢ is defined in terms of the tube radius R, rather
than the channel half-height H. It is now assumed that the module, both
when the membrane is clean and when cake has deposited, exhibits similar
friction characteristics to a smooth nonporous pipe. While this assumption
obviously neglects the surface roughness of the filter cake and the nonzero
wall permeability, it should serve as a useful starting point, particularly
when one is only concerned with the qualitative behavior of batch microfil-
tration.
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In the case of the smooth nonporous pipe, the friction factor can be
approximated using the following equation (16):

f_ log(6.9/Rewo) 33

VTuo = log(6.97Re) )

where Re,o is the Reynolds number for flow of pure filtrate through a

clean tube. The Reynolds number, Re, for the general case of suspension
flow with cake formation, is given by the expression

Rewo/pi*
Re = Cwo'd (34)

(=% e

where it is assumed that the liquid and solid densities are equal.
Equations (16) to (18) can now be solved numerically for set values of
@1, $20, P30, and Rewo.

SOLUTION METHOD

Since the primary goal of this work is to investigate the relationship
between flux and particle concentration, the time variable was eliminated
by dividing each of Eqgs. (16) and (17) by Eq. (18) and solved with c* as
the independent variable. However, this created the problem of a singular-
ity when J* = 1. In order to overcome this difficulty, Eqs. (16) to (18)
were first solved numerically with respect to time in order to obtain a
finite initial condition for the equations written with c* as the independent
variable. All equations were solved using the NAG FORTRAN routine
D02BBF (NAG Ltd., Oxford, UK).

RESULTS AND DISCUSSION

In this paper we do not present a comprehensive investigation of the
model, but focus on its main predictions as to the general shape of the
flux versus concentration curve. The lack of experimental data in the
literature made it somewhat difficult to assign values to the model param-
eters. For example, it is clear from its definition that a wide range of
values are possible for ¢, depending on the nature of the suspension, the
type of membrane used, the initial concentration, and the initial volume
of the feed. Examination of the crossflow filtration literature previously
discussed and using the dead-end specific resistance data of Nakanishi et
al. (17) indicates that typical values of ¢, range from 0.001 to 1,000. In
this paper we chose an intermediate value of 1. Once a value of ¢ is
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chosen, the value of ¢, can be chosen to give realistic values of dimen-
sionless flux in the plateau region. For typical crossflow filtration equip-
ment, ¢3 will tend to be in the range 1 to 50. Data on P, is very scarce,
but given that P, is typically considerably smaller than normal operating
pressures, our choice of 100 for AP¥ is reasonable (11). For n, we have
chosen values ranging from zero to 0.9, thus spanning a wide range of
cake compressibilities. Our choice of 0.1 for B is arbitrary, but calculations
have shown that changing p has no impact on the conclusions of this
paper. The values chosen for ¢, and p# are appropriate for a range of
microbial suspensions (18). The magnitudes of all model parameters used
in the calculations are summarized in Table 1.

Case 1
Cake Compressibility

It has been suggested that a possible reason for the sigmoidal relation
between flux and concentration is that toward the end of a batch microfil-
tration run, compression of the filter cake produces a rapid decline in flux
(5). This explanation is contradicted by Fig. 2 where it is shown that the
sole predicted effect of cake compressibility is not to change the shape
of the flux versus concentration curve, but simply to lower the flux. Of
interest too is the prediction that the flux is a very strong function of
concentration at low concentrations, but very weakly dependent on con-
centration at high concentrations. This prediction, which is in agreement
with experiment (2-5), is due to the fact that at short times dJ/dt is large
and dc/dt is small, while the converse is true at large times. Thus the
tendency for the flux to vary slowly with time (at large times) is exagger-

TABLE 1
Numerical Values of Model Parameters
Figure 1 Figure 2 Figure 3
P1 1 1 1
20 1 1 1
©3 1 1 1
Rewo — — 7000
AP¥* 100 100 100
n Variable 0.2 0.2
B 0.1 0.1 0.1
ch 25 Variable 12

p 100 100 100
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FIG. 2 J* versus c¢* for various values of n.

ated by plotting it against the rapidly-varying concentration. This is a
contributing factor in the occurrence of the so-called plateau region men-
tioned in the Introduction.

Suspension Viscosity

Figure 3 indicates that increasing suspension viscosity can produce re-
gions of constant flux, and, if the concentration becomes high enough,
lead to a situation where the flux actually increases with increasing con-
centration. This is in agreement with experiment (2, 4) and is consistent
with the qualitative explanation of Pritchard et al. (4) who asserted that
increasing fluxes were due to enhanced wall shear stress brought about
by increased suspension viscosity. It should be noted, at this point, that
increasing suspension viscosity is the only mechanism by which the flux
can increase with increasing concentration, at least according to the pre-
dictions of this model. Extensive calculations have shown that increasing
wall shear stress brought about solely by the reduction of the effective
channel height does not produce such an effect.
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FIG. 3 J* versus c* for various values of c,.

Case 2
Turbulent-to-Laminar Transition

In order to investigate whether a sigmoidal curve could be predicted
by the model, it was assumed that such behavior is due to a change in
the cake removal rate as a result of the transition from turbulent to laminar
flow. This pheneomenon was modeled by assuming that over an appropri-
ate range of Reynolds numbers, the cake removal constant, k, decreases.
Previous workers have suggested that the change in cake removal rate
occurs at a Reynolds number of about 2300 (4). In the calculations reported
in this paper, it is assumed that £ (and hence ¢29) undergoes a linear drop
from its initial value in the turbulent flow region to its final value in the
laminar flow region. This drop was assumed to occur between Reynolds
numbers of 3000 and 2000. Typical calculations for tubular systems are
given in Fig. 4. Curve A demonstrates that if no change in @0 occurs,
then a plateau region is observed as before. However, in Curve B it is
shown that when, for example, a tenfold drop in ¢20 occurs, sigmoidal-
like behavior occurs, but this is followed by a new plateau region. This
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FIG. 4 J* versus ¢*. Curve A: no change in cake removal constant, k. Curve B: 10-fold
linear drop in k between Re = 3000 and Re = 2000.

is in agreement with the data of Mourot et al. (2) and Pritchard et al. (4).
It should be noted, also, that if the concentration is allowed to increase
sufficiently, then the flux will eventually increase with concentration due
to increasing suspension viscosity. However such a region of increasing
flux is unlikely to be accessible experimentally.

CONCLUSIONS

The model presented in this paper provides confirmation that the distin-
guishing features of the flux versus concentration curve in batch microfil-
tration are not indicative of cake properties, but of suspension rheology.
Future work will involve modifying the model to take account of mem-
brane fouling and performing experiments to test the model in a more
quantitative way.
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